Math 1523	Calculus I	Worksheet 1	Name:
	Prof. Paul Bailey	March 4, 2004	

Problem 1. Find $\frac{dy}{dx}$.

(a) $y = (x^2 + 1)(x^2 - 1)(x^2 + 2)^{-1};$

- **(b)** $y = \sqrt[3]{x} \sin(x) \cos(x);$
- (c) $y = \arctan(\sqrt{\sin x});$
- (d) $x(t) = \sec t, y(t) = \tan t;$
- (e) $x^3 + y^3 = xy;$
- (f) $\cos y = x$.

Problem 2. Find the equation of the line tangent to the curve $y^2 = x^3 - 2x + 4$ at the point (3,5).

Problem 3. Let $f(x) = ax^2$, where a > 0. Find the value of a such that the line y = x - 1 is tangent to the graph of f(x), and state the point of tangency.